A New Charged Lepton Flavor Violation Program at Fermilab

RPF Town Hall 2 October 2020

ENIGMA: nExt geNeration experiments with hiGh intensity Muon beAms more references in backup;

Johnstone/Pasternak/Prebys talks in this session; also Papa, Tassielli talks and Middleton, Mackenzie, Borrel, Chislett on Mu2e/Mu2e-II

https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0-AF5_AF0_Robert_Bernstein-027.pdf

Overview

- Charged Lepton Flavor Violation, or transitions from $au o\mu o e$ without neutrinos have never been observed
- we've seen quark mixing and neutral lepton mixing (oscillations). Why not charged leptons?
 - fundamental puzzle dating to the discovery of the muon
 - really about the generation/flavor puzzles
 - CLFV is forbidden in the Standard Model but it is a extremely common in extensions, particularly SUSY.
 - Observation and study of CLFV could drive the choice of the next high-energy collider

Muons And CLFV

- Three main modes (note there are no neutrinos, hence charged lepton flavor violation!)
 - $\mu^+ \rightarrow e \gamma$ at PSI (MEG)
 - $\mu^+ \rightarrow 3e$ at PSI (Mu3e)
 - $\mu^- N \to e^- N$ at FNAL (Mu2e) and J-PARC (COMET)
 - Muons have a unique advantage since you can make beams, effective luminosity 10⁴⁸/cm²/sec in Mu2e or COMET
 - Note: two decay experiments with μ^+ and a capture experiment with μ^-

Advantage of Multiple Experiments

- Each of these experiments probes new physics in different ways
 - complementary, not competing
- Z-dependence of $\mu^- N \to e^- N$ can reveal nature of new physics
 - need to go to high atomic number like Au(Z=79)
 - Mu2e and COMET are for Al (Z=13) or Ti (Z=22)

Goals of this Effort

- A facility for
 - one muon beam for the decay experiments $\mu \to e \gamma$ and $\mu \to 3e$
 - this is similar to existing beams at PSI
 - a second muon beam for the $\mu^- N \to e^- N$ experiment that can go to high Z
 - this is a new beam, and probing high Z not possible with Mu2e/COMET beams
- Reaching orders of magnitude beyond current experiments to mass scales $\mathcal{O}(10^5)$ TeV

Comparisons

- For a sense of scale: how many stopped muons for the decay experiments could we make (under reasonable assumptions)?
 - approximate, but ratios are the take-away
 - PIP-II is transformative

Facility	Stopped Muon Rate/
Current PSI	2 x 10 ⁸
HiMB at PSI	1010
Mu2e Design (+ mode)	1011
PIP-II	>1012

Beam I: decay experiments

- Decay Experiments: stop μ^+ and let them decay
 - these muon beams are old technology. A 1.4 MWtarget is already the source for the PSI muon program, but PSI muon program only receives small fraction; we do not have similar competition
 - the statistics are so high that one can convert the γ so $\mu \to e \gamma, \gamma \to e^+ e^-$ which greatly improves momentum resolution and reduces background
 - x100 better than MEG-II, probing Ø (104) TeV in SUSY-like models

Beam II: capture experiments

- Protons hit target in a solenoid, making $\pi \to \mu$ (capture solenoid)
- PRISM concept:
 - and place μ^- in a fixed-field, alternating gradient ring (FFA)
 - phase rotate muons to have a narrow momentum spread
 - slow down leading edge, speed up trailing edge of bunches
- Extract muons to detector system
- PIP-II time structure requires a compressor ring to rebunch the beam, since phase rotation takes time and PIP-II is too fast

Challenges:

- Target 1MW of beam inside a superconducting solenoid to capture pions and create muon beam.
 - A lot of study has gone into this for muon colliders!
 Many overlaps and synergies with muon colliders and neutrino factories throughout
- FFA built at small scale at Osaka (MUSIC)
- Injection/Extraction to FFA
 - Kickers to transfer beam around 1 kHz

Forming Collaboration

 This LOI has people from the different programs and Labs: J-PARC, PSI, FNAL experiments

•
$$\mu \rightarrow e\gamma, \mu \rightarrow 3e$$
, and $\mu^- N \rightarrow e^- N$

- Beam and Detector Groups for decay and conversion experiments being formed
- Discussions with Proponents for Low-Energy Muon Facility about overall Muon Program (see C. Johnstone talk)
 - muonium-antimuonium (Tang & Petcov)

Preliminary Groups

- Decay Experiments:
 - Beam: use CDR for HiMB at PSI for starting point;
 HiMB planned for funding 2025-2028, this would follow that generation
 - Detectors: it possible to build one detector for both $\mu \to e \gamma$ and $\mu \to 3e$? Multiple stopping targets?
 - tracking? aging? calorimetry? timing? γ converter design?

Preliminary Groups

- Capture Experiment
 - Beam: compressor ring preliminary design underway; adapt FFA design from PRISM group; kickers, injection/extraction, and targeting
 - need to form connection to muon collider work (https://indico.cern.ch/event/930508/)
 - Detector: is a Mu2e/COMET-style detector best?
 Can crystal calorimetry handle the rates without excessive pile-up? Tracker lifetime?

Muons are a Community Priority

- Just from this session, we see:
 - two muonium-antimuonium talks (Tang/Petcov)
 - rare muon decays and light physics (Redigolo)
 - $\mu \rightarrow e \gamma$ (Papa, Tassielli)
 - $\mu^- N \rightarrow e^- N$ Mu2e and Mu2e-II (Middleton, Chislett, Prebys)
 - $\mu^- N \to e^+ N$ ($\Delta L = 2$ process!) at Mu2e and Mu2e-II (MacKenzie)
 - General Low Energy Muon Facility (Johnstone)
- A large community committed to muon physics over Snowmass period and beyond

What We Want from Snowmass/P5

Snowmass:

- Set "requirements". Collaboration will work on a coherent early-stage design of both beams and detectors
- we would like the Snowmass report to discuss the physics case for a large-scale new muon program at PIP-II and to include this opportunity in the report

• P5:

 we would like P5 to endorse the physics concept and resources for design studies

Backup

Some Relevant Papers

- Experimental Limiting Factors for the Search of $\mu \to e \gamma$ at Future Facilities, Renga et al., 1811.12324
- Towards a High Intensity Muon Beam (HiMB) at PSI
 - https://indico.cern.ch/event/577856/contributions/3420391/attachments/ 1879682/3097488/Papa HiMB EPS2019.pdf
- A Phase Rotated Source of Muons (PRISM) for a $\mu \to e$ Conversion Experiment
 - https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0-AF5_AF0_J_Pasternak-096.pdf
- Bunch Compressor for the PIP-II Linac
 - https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF5 AF0-RF5 RF0 Prebys2-203.pdf

Some Relevant Papers (2)

- An Upgraded Low-Energy Muon Facility at Fermilab
 - https://www.snowmass21.org/docs/files/summaries/RF/ SNOWMASS21-RF0-AF0-007.pdf
- The MEG-II Experiment and its Future Developments
 - https://www.snowmass21.org/docs/files/summaries/RF/ SNOWMASS21-RF5_RF0_MEGII-062.pdf
- Mu2e-II
 - https://www.snowmass21.org/docs/files/summaries/RF/ SNOWMASS21-RF5_RF0_Frank_Porter-106.pdf
- A New Experiment for the $\mu \to e \gamma$ Search
 - https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5 RF0 Tassielli-067.pdf

Contributions to μe Conversion

Supersymmetry

Compositeness

Leptoquark

$$\Lambda_c \sim 3000 \text{ TeV}$$

$$M_{LQ} = 3000 (\lambda_{\mu d} \lambda_{ed})^{1/2} \text{ TeV/c}^2$$

Heavy Neutrinos

Second Higgs Doublet

Heavy Z' Anomal. Z Coupling

 $M_{7} = 3000 \text{ TeV/c}^2$

$$|U_{\mu N}U_{e N}|^2 \sim 8x10^{-13}$$

also see Flavour physics of leptons and dipole moments, arXiv:0801.1826; Marciano, Mori, and Roney, Ann. Rev. Nucl. Sci. 58, doi:10.1146/annurev.nucl.58.110707.171126;

Effective Lagrangian

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa + 1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1 + \kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L (\bar{u}_L \gamma_{\mu} u_L + \bar{d}_L \gamma_{\mu} d_L)$$

Supersymmetry and Heavy Neutrinos

Contributes to $\mu \rightarrow e\gamma$

(just imagine the photon is real)

New Particles at High Mass Scale (leptoquarks, heavy *Z*,...)

Does not produce $\mu \rightarrow e\gamma$

from André deGouvêa

Simplistic Comparsion

after Andre deGouvea

Mu2e Upgrades and Z-Dependence

Z penguins

- Different
 Operators
 have different
 Z-dependence
- γ penguins dipole scalar
- Combine depending on the particular model

5% measurement on AI/Ti needed to see split

Lepton flavor violating mu - e conversion rate for various nuclei M. Koike et al., J.Phys. G29 (2003) 2051-2054

DOI: 10.1088/0954-3899/29/8/401

Example of Physics Reach

just one example

